KAJIAN KINERJA WATERFLOODING PADA STRUKTUR X LAPISAN Y FORMASI TALANG AKAR LAPANGAN A PT PERTAMINA EP ASSET 2 FIELD PRABUMULIH

STUDIES PERFORMANCE OF WATERFLOODING ON THE X STRUCTURE Y LAYER TALANG AKAR FORMATION FIELD A PT. PERTAMINA EP ASSET 2 FIELD PRABUMULIH

Merina Murti 1, Eddy Ibrahim 2, Fuad Rusydi Suwardi 3

1,2,3 Teknik Pertambangan, Fakultas Teknik, Universitas Sriwijaya, Jalan Raya Prabumulih Km.32, Ogan Ilir, Sumatera Selatan
Email: merina.murti@yahoo.co.id

ABSTRAK


Kata Kunci : Analisis Waterflooding Secara Sumurn dan Struktural

ABSTRACT

Waterflooding is an analytical study of the performance evaluation to find out the offense and the degree of success for the implementation of Waterflooding on the X structure Y layer in field A PT. Pertamina EP Field Asset 2 Prabumulih. Waterflooding analysis performed for declining production in the period of 6 years after doing the injection. Analysis is performed using daily and monthly data to analyze the measuring pole and structural. Measuring pole and structural analysis is performed using production and injection data with Hall plot, injection profile, Voidage Replacement Ratio, production profile, and Bubble Map parameter. PT. Pertamina do water injection (Waterflooding) for enhanced oil recovery in the X structure Y layer Talang Akar Formation in Field A. Water Injection (Waterflooding) analyzes should be performed periodically daily or monthly disposable good to know the offense occurred. In the analysis of the performance of a measuring pole and structural Waterflooding should treat production and injection data on the parameters used. The analysis of known activity of water injection (Waterflooding) succeed because of increased pressure on the X structure Y layer in Field A and was increasing with cumulative oil production revenue producing oil before doing Waterflooding from January 1965 - September 1997 is 22,235 MBBL and after doing Waterflooding in October 1997 - May 2013 is 28,873 MBBL.

Keywords: Waterflooding, Analyses by Pole And Structural
1. PENDAHULUAN


Struktur X telah beroperasi selama 47 tahun dengan Original Oil In Place (OOIP) adalah 83.141 MSTB. Struktur X lapisan Y memiliki Recovery Factor sebesar 63%. Kegiatan eksplorasi dilakukan di area sejak tahun 1965 dengan sumur produksi pertama adalah XY-1. Kegiatan produksi Struktur X Lapisan Y mengalami penurunan secara muncap pada tahun 1967. Pada September 1997 kumulatif produksi Struktur X lapisan Y adalah 22.235 MBBL dengan Recovery Factor terhadap Original Oil In Place (OOIP) sebesar 26.7% dan Recovery Factor terhadap Estimated Ultimate Recovery sebesar 42.5%. Sehingga Remaining Reserve Struktur X Lapisan Y adalah

\[ RR = RF - N_p (\text{Primary Recovery}) \]
\[ = 63\% - 26.7\% \]
\[ = 36.3\% \]

Nilai Remaining Reserve Struktur X lapisan Y masih cukup besar, namun dengan produksi yang semakin menurun maka pada Oktober 1997 pertama kali dilakukan kegiatan injeksi air yaitu Waterflooding untuk meningkatkan peredahan minyak pada struktur X lapisan Y. Struktur X Lapisan y memiliki tenaga pendorong reservoirnya adalah air (Water Drive)[3]. Air yang berada di reservoir akan mendorong minyak kepermukaan.

Analisis kinerja injeksi air (Waterflooding) di Struktur X Lapisan Y dilakukan secara berkala baik harian maupun bulanan. Analisis dilakukan untuk mengetahui kesalahan yang terjadi pada kegiatan injeksi air (waterflooding) yang mengakibatkan produksi semakin menurun dalam periode waktu 6 tahun setelah dilakukannya injeksi air. Analisis kinerja Injeksi air (Waterflooding) yang dilakukan dengan menggunakan data harian maupun bulanan dengan menganalyis secara sumur dan struktural.

Permasalahan pada analisis waterflooding ini adalah pengaruh waktu terhadap penurunan produksi pada sumur-sumur produksi Struktur X Lapisan Y setelah dilakukannya kegiatan injeksi air (Waterflooding) dan parameter-parameter yang digunakan untuk menganalisis secara sumur dan struktural pada kegiatan Waterflooding.

Hasil kinerja waterflooding struktur X lapisan Y adalah adanya peningkatan kumulatif produksi minyaknya. Periode waktu dari tahun 1997-2013 jumlah peningkatan produksi minyaknya sebesar:

\[ N_p (\text{Waterflooding}) = N_p 2013 - N_p 1997 \]
\[ = 28873 \text{ MBBL} - 22235 \text{ MBBL} \]
\[ = 6638 \text{ MBBL} \]

Persamaan yang digunakan untuk menghitung original oil in place adalah sebagai berikut[4]:

\[ \text{OOIP}(Ni) = 7758 \frac{V_{reb} (1-Swi)}{Bo} \]  \hspace{1cm} (1)

Persamaan berikut ini yang digunakan untuk menghitung jumlah minyak mula-mula dari mekanisme pendorong reserviornya air[5]:

\[ \text{OOIP}(N) = 7758 \frac{V_{reb} \text{ Sor}}{Bo} \]  \hspace{1cm} (2)

Persamaan berikut ini digunakan untuk menghitung nilai recovery factor[6]:

\[ RF = \frac{N}{Ni} \times 100\% \]  \hspace{1cm} (3)
Persyaratan berikut ini digunakan untuk menghitung nilai estimasi cadangan yang dapat terambil (EUR)[7].

\[ EUR = Ni \times RF(\%) \]  

(4)

2. METODE PENELITIAN

Penelitian dilakukan pada tanggal 30 September 2013 hingga 20 Januari 2014 di PT Pertamina EP Asset 2 Field Prabumulih. Metode penelitian yang digunakan ialah sebagai berikut:

1. Pengamatan di lapangan dengan pengambilan data-data berupa data sekunder.
   Data sekunder berupa data produksi dan data injeksi serta studi literatur untuk mempelajari teori-teori, rumusan-rumusan dan pengambilan data-data pendukung lain dari perusahaan yang berkumpulan dengan penelitian.

2. Pengolahan Data

3. PEMBAHASAN

Struktur X adalah struktur yang terletak pada Lapangan A. Struktur ini merupakan struktur dengan zona produktif berupa batu pasir dari Formasi Talang Akar dengan tekanan awal sekitar 2067 psi. Ketebalan total zona yang sudah diproduksi sekitar 140 m. Sedangkan ketebalan total zona lain yang berpotensi dan belum pernah diproduksi memiliki gross thickness sekitar 342 m. Zona-zona produksi utama pada struktur X adalah zona Y dan Z yang terletak pada Formasi Talang Akar. Fluida produksi pada struktur X dari seluas sampai sekarang masih berhasil dari lapisan batu pasir Y, Z, dan lain-lain. Struktur X memiliki Original Oil In Place (OOIP) 83.141 MSTB, dihitung menggunakan persamaan (1).

\[ \text{OOIP (Ni)} = \frac{82964 \times 2.0 \times 195 \times (1 - 0.205)}{1.2 \times 1000} = \frac{83141}{\text{MSTB}} \]

Jumlah Minyak mula-mula dari mekanisme pendorong reservoirnya adalah air dihitung dengan menggunakan persamaan (2).

\[ \text{OOIP (N)} = \frac{82964 \times 2.0 \times 195 \times 0.467}{1.12 \times 1090} = \frac{52332.8}{\text{MSTB}} \]

Nilai Recovery Factor dapat dihitung menggunakan persamaan (3).

\[ RF = \frac{52332.8}{83141} \times 100\% = 63\% \]

Nilai estimasi cadangan yang dapat terambil dapat dihitung menggunakan persamaan (4).

\[ EUR = \frac{83141}{\text{MBBL}} \times 63\% = \frac{52332.8}{\text{MBBL}} \]

3.1 Analisis Injeksi Air (Waterflooding)

Kegiatan injeksi air (waterflooding) pertama kali dilakukan pada tahun 1997 pada sumur XY-10 dan XY-11. Kumulatif produksi minyak sebelum dilakukannya injeksi air adalah 22.235 MBBL berkadar air 77%. Recovery Factor (RF) terhadap Estimated Ultimate Recovery (EUR):

\[ RF(EUR) = \frac{Np}{EUR} \times 100\% \]
Recovery Factor (RF) terhadap Original Oil In Place (OOIP):

\[
RF(\text{OOIP}) = \frac{Np}{\text{OOIP}} \times 100\%
\]
\[
= \frac{22235MBBL}{83141MBBL} \times 100\%
\]
\[
= 26.7\%
\]

Tekanan sebelum dilakukannya injeksi air (waterflooding) pada Mei 1997 adalah 1621 Psi. Pada awal dilakukannya injeksi tekanan mengalami penurunan menjadi 1436 Psi pada Agustus 1999, tetapi setelah itu tekanan menjadi konstan 1350-1500 Psi. Pada tahun 2004 tekanan naik menjadi 1615 Psi, kembali pada tekanan sebelum dilakukannya Waterflooding. Injeksi air (waterflooding) yang dilakukan di struktur X lapisan Y memiliki 8 sumur injeksi, yaitu XY-04, XY-05, XY-09, XY-10, XY-11, XY-13, XY-19, dan XY-20, dengan Rate Injeksi adalah 47986 BPD. Analisis Injeksi air (waterflooding) yang dilakukan secara sumuran dan structural dengan membahas tentang pengaruh injeksi air (waterflooding) terhadap tekanan reservoir dan performa produksi pada struktur X lapisan Y.

3.1.1 Analisis Sumuran

Dalam analisis sumuran maka parameter yang dapat digunakan berupa Hall Plot yaitu performa sumur injektor yang didapat dari data injeksi sumuran. Pada sumur injeksi, performa injektor dapat dilihat dari hasil hall plot yaitu cumulative injection vs cumulative pressure (time) [8]. Hall Plot sumur injeksi XY-04, XY-05, XY-09, XY-10, XY-11, XY-13, XY-19, dan XY-20 dijelaskan pada Lampiran A. Performa sumur injektor dapat dilihat pada Tabel 1.

Dari tabel 1 dapat disimpulkan bahwa hampir keseluruhan sumur injektor normal yaitu sumur XY-04, XY-05, XY-09, XY-11, XY-13, XY-19, dan XY-20. Hanya sumur XY-10 yang performa injeksiya mengalami plugging atau pengendapan pada dinding sumur injeksi (Gambar 1). Salah satu contoh hall plot yang performa injeksiya normal (Gambar 2).

Tabel 1. Performa Injektor Sumuran Struktur X Lapisan Y

<table>
<thead>
<tr>
<th>INJECTOR</th>
<th>PLUG</th>
<th>NORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 1 Hall Plot Sumur XY-10 Struktur X Lapisan
Gambar 2. *Hail Plot* Sumur XY-04 Struktur X Lapisan Y

Performa injeksi Sumur XY-09 dikatakan normal dikarenakan plot Cum Inj vs Cum P.t menghasilkan kurva yang cenderung melengkung dengan kemiringan 45°. Sesuai dengan standar kurva pada performa injeksi[8]. Performa injeksi sumur XY 10 mengalami plugging (Gambar 1). Performa injeksi sumur dikatakan mengalami plugging (Pengendapan) dikarenakan kurva cenderung melengkung ke atas dengan kemiringan <45°.

3.1.2 Analisis Structural

a. Profil Injeksi


b. Voidage Replacement Ratio (VRR)

Nilai Voidage Replacement Ratio *Cumulative* pada struktur X lapisan Y yaitu 0.56, jika hasil perhitungan menunjukkan kumulatif VRR kurang dari 1 (VRR<1) maka laju injeksi belum optimal[9], dan harus ditingkatkan untuk optimasi produksinya. Namun jika hasil perhitungan menunjukkan kumulatif VRR lebih dari 1 (VRR>1) maka laju injeksi sudah cukup optimal sehingga laju produksi minyak dapat dioptimasi untuk ditingkatkan.

Gambar 3. Profil Injeksi Struktur X Lapisan Y
Gambar 4. Voidage Replacement Ratio Struktur X Lapisan Y

Plot VRR Struktur X Lapisan Y pada Gambar 4 menunjukkan kumulatif VRR dan tekanan reservoarnya, dimana data tekanan digunakan untuk melihat perubahan tekanan yang terjadi dari kegiatan injeksi tersebut. Dilihat dari tekanan reservoarnya, pada awal dilakukan injeksi tekanan tersebut mengalami penurunan dari tekanan sebelum dilakukan injeksi yaitu dari 1621 Psi menjadi 1436 Psi. Struktur X Lapisan Y menunjukkan nilai kumulatif VRR kumur dari 1 (VRR<1) yaitu 0.56, sehingga dapat disimpulkan bahwa laju injeksi pada Struktur X lapisan Y di lapangan A masih belum optimal dan harus ditingkatkan untuk optimasi produksinya.

c. Profil Produksi Sebelum dan Setelah Waterflooding

- Profil Produksi sebelum injeksi (waterflooding)


- Profil Produksi Setelah Injeksi Air (waterflooding)

Pada Oktober 1997 recover factor sudah mencapai 72.2% terhadap EUR sedangkan recovery factor terhadap OOIP adalah 26.7%, maka pada tahun 1997 dilakukan injeksi (waterflooding) untuk meningkatkan produksi struktur X lapisan Y.

Dilihat dari profil produksi setelah Waterflood pada Gambar 6. Pada tahun 1997-2002 produksi minyak mengalami kenaikan dari 853 BOPD berkadar air 79.5% menjadi 1922 BOPD berkadar air 98%. Pada tahun 2002-2010 produksi minyak mengalami penurunan dari 1922 BOPD berkadar air 98% menjadi 793 BOPD berkadar air 95.1%. Pada tahun 2011 produksi minyak mencapai titik terendah karena berkurangnya sumur produksi yang aktif yaitu 396 BOPD berkadar air 95.3%. Pada tahun 2013 produksi minyak mengalami peningkatan yang disebabkan adanya penambahan sumur produksi yang aktif yaitu 606 BOPD berkadar air 96.9%.
Gambar 5. Profil Produksi Tahun 1965-1996 Struktur X Lapisan Y

Gambar 6. Profil Produksi Setelah Waterflooding

Kumulatif produksi hingga Mei 2013 adalah 28873 MBBL dengan water cut 96.9%. Nilai recovery factor terhadap EUR 93% sedangkan nilai recovery factor terhadap OOIP adalah 34% jadi Remaining Reserve Struktur X lapisan Y adalah 3%. Profil produksi sebelum dan setelah dilakukannya waterflooding dijadikan parameter dalam mencantumkan tingkat keberhasilan injeksi air (waterflooding), karena waterflooding di lakukan dengan tujuan utama untuk meningkatkan produksi minyak pada struktur X lapisan Y yang mengalami penurunan produksi sehingga tidak bernilai ekonomis lagi.

d. Bubble Map


Jari-jari pengurasan mengindikasikan seberapa luas reservoir yang sudah terkurus. Radius drainage (Jari-jari Pengurasan) memperlihatkan bahwa jari-jari pengurasan terbesar yaitu 2018 m diindikasikan oleh warna krem pada sumur XY-06 Berlaku pula pada bubble map swept radius (Jari-jari Pendesakan). Swept Radius mengindikasikan...
luasnya desakan air yang terjadi. Pada tahun 2013 nilai swept radius terbesar yaitu 986 yang diindikasikan oleh warna krem pada sumur XY-13.

Gambar 7. Jari-jari Pengurusan Struktur X Lapisan Y

Gambar 8. Jari-jari Pendesakan Struktur X Lapisan Y

3.2 Hasil Analisis Injeksi Air

Tabel 3. Data Primary Recovery Dan Secondary Recovery

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary Recovery</th>
<th>Secondary Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Awal</td>
<td>Peak</td>
</tr>
<tr>
<td>Qo (BOPD)</td>
<td>560</td>
<td>7986</td>
</tr>
<tr>
<td>Qg (SCFPD)</td>
<td>33</td>
<td>966</td>
</tr>
<tr>
<td>Qw (BWPD)</td>
<td>11</td>
<td>589</td>
</tr>
<tr>
<td>Gross (RFPD)</td>
<td>613</td>
<td>8643</td>
</tr>
<tr>
<td>Water Cut (%)</td>
<td>2</td>
<td>7.7</td>
</tr>
<tr>
<td>Np (MBBL)</td>
<td>17</td>
<td>4320</td>
</tr>
<tr>
<td>RF - EUR (%)</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>RF - OOIP (%)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Tekanan (Psi)</td>
<td>1621</td>
<td>1436</td>
</tr>
<tr>
<td>SumurProduksi</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>SumurInjeksi</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabel 4. Data Hasil Analisis Waterflooding Struktur X Lapisan Y Di Lapangan A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hasil</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sumurkan</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall Plot</td>
<td>7 sumur injeksi Normal</td>
<td>Sebagian Besar Sumur injeksi normal</td>
</tr>
<tr>
<td>1 sumur injeksi plugging</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Structural</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profil Injeksi</td>
<td>Terdapat 8 sumur injeksi</td>
<td>Rate Injeksi pada Tahun 2013 adalah 47986 BWPD</td>
</tr>
<tr>
<td>Tekanan</td>
<td>Tahun 2004 : 1615 Psi</td>
<td>Tekanan reservoir mengalami peningkatan</td>
</tr>
<tr>
<td>VRR</td>
<td>0.56</td>
<td>VRR &lt; 1 laju injeksi belum optimal</td>
</tr>
<tr>
<td>WC</td>
<td>Tahun 2013 : 96.9%</td>
<td>Water cut mengalami kenaikan hingga 96.9%</td>
</tr>
<tr>
<td>Kumulatif</td>
<td>Mei 2013 : 28873 MBBL</td>
<td>RF - EUR : 93%, RF-OOIP : 34%</td>
</tr>
</tbody>
</table>

3. KESIMPULAN

Hasil analisis injeksi air (waterflooding) pada struktur X lapisan Y di lapangan A yaitu:


2. Analisis Waterflooding sumurkan yang dalam hal ini menggunakan parameter Hall Plot mengidentifikasi sebagian besar performa sumur injeksi adalah normal, hanya satu sumur injeksi yang mengalami pengendapan (plugging) yaitu sumur XY-10.

3. Analisis waterflooding structural yang dalam hal ini menggunakan parameter :

a. Profil Injeksi

b. Volumetric Replacement Ratio (VRR)
   Struktur X Lapisan Y memiliki nilai kumulatif VRR kurang dari 1 (VRR<1) yaitu 0.56, sehingga dapat disimpulkan bahwa laju injeksi pada Struktur X lapisan Y di lapangan A masih belum optimal dan harus ditingkatkan untuk optimasi produksinya.

c. Profil Produksi Sebelum dan Setelah Dilakukannya Injeksi Air (waterflooding)
   - Sebelum Waterflooding
     Kumulatif produksi hingga Oktober 1997 adalah 22235 MBBL yang memiliki nilai recovery factor terhadap EUR adalah 72.2%, sedangkan nilai recovery factor terhadap OOIP adalah 26.7, jadi Remaining Reserves truktur X lapisan Y adalah 10.3.
   - Setelah Waterflooding
     Kumulatif produksi hingga Mei 2013 adalah 28873 MBBL dengan water cut 96.9%. Nilai recovery factor terhadap EUR 93% sedangkan nilai recovery factor terhadap OOIP adalah 34% jadi Remaining Reserve Struktur X lapisan Y adalah 29%.

d. Bubble Map
   - Radial Drainage
     Jari-jari pengurusan hampir mencapai titik maksimal dimana jari-jari tersebut sudah mulai bersinggungan dengan jari-jari pengurusan sumur produksi satu sama lain.
   - Swept Radius

UCAPAN TERIMA KASIH


DAFTAR PUSTAKA